Ion Channels Made from a Single Membrane-Spanning DNA Duplex
نویسندگان
چکیده
Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA-lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity.
منابع مشابه
Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملNanometer-Scale Pores: Potential Applications for Analyte Detection and DNA Characterization
Several classes of transmembrane protein ion channels function in vivo as sensitive and selective detection elements for analytes. Recent studies on single channels reconstituted into planar lipid bilayer membranes suggest that nanometer-scale pores can be used to detect, quantitate and characterize a wide range of analytes that includes small ions and single stranded DNA. We briefly review her...
متن کاملReversible gating of ion transport through DNA-functionalized carbon nanotube membranes
Carbon nanotubes (CNTs) can be used to create unique fluidic systems for studying ion transport in nanochannels due to their well-defined geometry, atomically smooth and chemically inert surface, and similarity to transmembrane protein pores. Here, we report the reversible molecular gating of ion transport across DNA-functionalized CNT membranes. The diffusive transport rates of ferricyanide io...
متن کاملGating of Single Synthetic Nanopores by DNA Molecular Switching
Switchable ion channels that are made of membrane proteins play crucial role in cellular circuits. Thereby synthetic nanofluidic channels attract great interest owing to the novel ion transport properties that are helpful for understanding the biological ion channels and for the promising applications on ultrasensitive molecular detection and separation [1]. Here we report a synthetic nanopore-...
متن کامل